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Exponential Transmission Lines as Resonators

and Transformers*
RABINDRA N. GHOSEf

Summary—An attempt has been made to analyze the theory of

an exponential transmission line from its complex reflection coeffi-

cient% standpoint and to indicate how the characteristics of an ex-

ponential line can be completely represented for any frequency with

the help of the Smith Chart. It is shown that the optimum design
parameters of an exponential transmission line which maybe used as

a transformer, with a frequency-sensitive load at one end, can be

determined with the help of the Smith Chart and some derived equa-

tions. This paper also includes a study of the coaxial type exponential

line which can be used as a series or parallel resonator. Theoretical

expressions for the attenuation constant, stored energy, and Q for

such types of resonator have been derived. Also indicated in this

paper is the possibility of replacing the uniform-line coaxial-type

resonators in many microwave and uhf wave filters by the ex-

ponential-line resonators, particularly when a large power-handling

cpacity is warranted.

INTRODUCTION

I N RECENT YEARS the exponential transmission

line has found wide application in microwave net-

works as a matching device suitable for matching

two unequal impedances over a wide band of frequen-

cies. A general analysis of the exponential transmission

line has been made by Burrowsl and Schelkunoff. 2 The

purpose of this paper is to analyze the theory of the

exponential line from its reflection coefficient’s stand-

point and to indicate how the characteristics of an ex-

ponential line can be represented with the help of a

Smith Chart which is primarily designed for uniform

transmission lines. The possibility of using the expo-

nen tial transmission line in the form of a resonator is

also discussed in this paper.

GENERAL EQUATIONS AND THEIR SOLUTION

For any transmission line system the differential

equations for the voltage and current can be repre-

sented b~

* Manuscript received by the PGilf TT, January 30, 1957. Pre -
sentecl at the IRE-\VESCON Conf., Los Angeles, Calif. ; .lugust 21–
‘7A 19.i6

~ The Ramo-ItTooldridge Corp., Los Angeles, Calif. Formerly
with Radio Corp. of America, Camden, N. J.

1 C. R, E\urrows, “The exponential transmission line, ” Bell .S’YS.
Tech. J., vol. 17, pp. 555–573; October, 1938.

2 S. A. Schellmnoff, “Electromagnetic Waves, ” D. Van Nostra nd
Co., Inc., New York, N. Y., p. 222.
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where

T“ = voltage across the transmission line at z,

1 = current in the transmission line at x,

Z = equivalent series impedance per unit length of the

line,

Y= equivalent shunt admittance per unit length of

the line.

For a nonuniform transmission line, Z(z) and l?(z) are

functions of z; i.e., they are functions of the position

along the line. Eq. (1) will usually give rise to a set of

second-order rfifferen tial equations

Walker and Waxs have shown that these second-order

differential equations can be converted into a single

first-order nonlinear differential equation

dp
—— 2~p+~(l –p2)~ln ZO==0 (3)
dz

v/’I – z,
~ . ——— z“ = 42/1”

v/I + Zo ‘

For an exponential transmission line,l

20 = kc”’ (4)

where k is the characteristic impedance of the line at

z = O, and a is the rate at which the characteristic im-

pedance changes exponentia-lly with the position z.

From (3) and (4) one obtains the differential equation

for an exponential line

dp
hP+; (l- PP=o.

dz –
(.5)

3L. R. lI_aIker and N. t~ax, “Nonuniform transmission lines and
reflection coefficients, ” J. .lpji. Phys., vol. 17, pp. 1043-1045; De-
cember, 1946.

4 For an emonential line whose Z“ decreases from s =0, a in (4)
can be replaced by ( —d
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If one is interested in the coaxial form of exponential

line through which TEM waves propagate without cut-

off, ~ can be regarded as a constant function of the po-

sition z, since both a and (3 = 2iT/h are independent of z,

This is also true for the parallel-wire transmission line

and the strip transmission line carrying TEM waves.

Thus, making use of the following transformation

2y
p=p+—;

()
s’= :+1

0!

one obtains from (5)

s dj a
. -sdz+C

~2_s2 2

and

[

( a!sz
tanh ~ + tanh SC

)
p(z) = – ~ + s ————~—

a

(
1 + tanh ~ tanh SC

) 1

where C is the constant of integration which has

evaluated from the boundary condition.

Let the boundary condition be so assumed

p(l) =pO, where po is known. From (8), then,

tanh Sc —— —

[

() 27
Po+—

a

(
s+ p,+

0!s1
+ S tanh ~- 1
Yanha

and

“(z)=-(:-+

(6)

(7)

(8)

to be

that

(9)

(lo)

where ~i. is the input impedance of a uniform transmis-

sion line with normalized surge impedance of one and

which is terminated at the load end, z =1, by an im-

pedance

(11)

As the equivalent ~,. can readily be obtained from

the Smith Chart when a, -y, and pO are known, the effect

of the exponential-line transformer in terms of the re-

flection coefficient and vswr at the input end can be de-

termined without too much laborious computation even

when a frequency-sensitive load with arbitrarily varying

reflection coefficient is connected at the load end. It may

be remarked that while computing ~in, the electrical

length of the line should be considered as ~1, where

for a lossless exponential line transformer.

(12)

To enable the transformer to work well beyond the

cutoff frequency, it will be desirable to choose a such

that

47r
a<<—> (13)

A

h being the wavelength corresponding to the lowest fre-

quency in the passband which has to be transmitted

through the transformer. The fictitious impedance ~z

in (11) is, in general, complex. Assuming the trans-

former is lossless and is operating well beyond cutoff

(14)

In order to make use of the method described, it is es-

sential that ~z should be in the right half-plane, as

otherwise one cannot make entries on the Smith Chart

to compute ~i.. To ensure this, one can set

b
_Re Id a

F {TFex’[ic+m 20’15’
where 9 is the phase angle of the reflection coefficient PO

at the load end of the transformer. That is,

,2dJJ ()aces t?+z.
2 2

But I POI S 1 and the value of cos (O+7r/2) S 1. Hence,

and

But this condition has already been assumed in order to

enable the transformer to operate well beyond the cut-

off frequency. Hence no difficulty will be experienced in

computing p(0) according to the method described

above. An equivalent circuit describing the method of

computing p(0) is shown in Fig. 1. It should be recog-

nized that this method will be of considerable help in

synthesizing the design parameters of a transformer for

optimum p(0) over a frequency band with any specific

load connection.b

EXPONENTIAL LINE AS A RESONATOR

From the preceding analysis, it appears that a stand-

ing wave can be maintained in a section of lossless ex-

ponential line when PO is chosen t 1. This suggests the

possibility of the use of the exponential line as a reso-

nator.

5 Schelkunoff, op. cit. The reflection chart shown in Fig. 7,11
can be used to determine the complex reflection coefficient when the
normalized impedance of the arbitrary load is known. Similarly, the
input impedance of the transformer for an arbitrary load can be
determined readily from Fig. 1 above and the reflection chart.
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Fig, l—Equi~-alent circuit of an exponential transformer.

Let it be assumed that one is interested in using a sec-

tion of an exponential line as an infinite-impedance or

parallel-resonance type resonator when one end of the

line is short-circuited at z =1, as shown in Fig, 2. This

is analogous to a A/4 cavity for a uniform line

Polz=t = — 1, p(o) = 1. (16)

Fig. 2 —Exponential resonator with Z, incre.ising with z> 0,

From (10),

where k is any integer. The required length for parallel

resonance is

and

A
1p,min = —

( ‘)

1/2
~ I–-a_

4/f’

(17)

whers a lossless line is assumed, such that ~ =@. Simi-

larly, if one is interested in using the exponential line as

a series resonator,

eisl
p“~,=t = — 1, P(O) = – 1, ~ = n-r (18)

The

and

Fig. 3
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Fig. 3—Minimum resonaut length of series and
parallel-type exponential resonators.

STORED ENERGY, M7ALL LOSSES, AND Q OF
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AN EXPONENTIAL RESONATOR

From the differential equation of voltage in the ex-

ponential transmission line whose characteristic imped-

ance increases with z >0, one obtains

‘(z)“exp(Y-i~z)+Bexp(:-+‘d ’20)
where A and B are arbitrary constants. Iilen a shorting

p].~te is placed at z =1,

v(l) = o,

where ?L k any integer. ... , .,
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Let the current at any z be represented as For both series and parallel resonance, sin 2@= O,

r(p, z) = If(z). 3oeiril!Pl
u=

For the TEM mode, z,(o)

qIj(z)
Eo(p, z) = —

where e is the dielectric constant of the medium inside

27rp the transformer. Fig. 4 shows a comparison of the stored

energy in uniform and exponential type resonators.

[

~(’) qIf(z)
V-. ~.~p

and

EP = – 2iBei3Zet”z/2)
sin (~t — i%)

b(~) ‘

[1
(22)

pln ——
a(z) i

ii
v being the intrinsic impedance of the free space. At h

resonance, the maximum stored electrical energy is the
E
;

same as the maximum stored magnetic energy, and .+

when the stored electrical energy is maximum, the 5
>

stored magnetic energy is zero. Hence the stored energy ~

in a section of an exponential line acting as a resonator ~

can be obtained from its stored electrical energy alone.
l-l

Stored electrical energy
z.~
G

1
4

Ssb(.) ea. sin2 (fj — ~z)

= MET
P2 ~n ~g 2

()

pdpd~ (23)
o a(. )

a(z)

where

M=21BI.

From the assumed variation of the characteristic imped-

ance in an exponential line,

1.4

1.2

1.0

/

0 0.5 1.0 1.5 2.0

<IV *

Fig. 4—Relative variation of stored energy in an
exponential resonator.

Zo(z) = Zo(0)e”z
The wall losses consist of the losses resulting from the

b(z)
=601n —. (24)

tangential component of the magnetic field at the lateral

a(z) surface and at the end plates of the resonator. These can

be determined from the surface integral of the tangen-
Substituting the results of (24) in (23), one obtains tial H+ over the entire surface.

‘= Z2(+H
For parallel resonance, analogous to the h/4 type

(25) resonance in a uniform line resonator, the wall loss W

becomes

R.TM’ 3600
Iv”=——

bq’ 202(0)

[

ea(m-,,, _ ~ _ “(m - 1)2
m z,(o) m 1 1

()

2$2

+X? –-—
—

Tfl=o m! (m — 1) az(m — 1)2.,

L 1+
4/?j2

(26)
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where R, is the real part of the surface impedance of the

metal forming the resonator.

If 20(0) be chosen GO ohms and

~-+o

then the Q of the resonator becomes

2407r2

(

~ –1

)
—-— 8+~+= .

s a

It is interesting to note that, when

a+o

the exponential-line resonator becomes a

resonator and the Q of such resonator is

uniform-line

The characteristic impedance of the lines is assumed to

be the same in both cases.

The Q can be determined alternatively from the input

reflection coefficient alread~f derived. But the evaluation

of Q from the field integrals reveals the characteristics of

the resonator from the energy consideration.

Fig. 5 shows a comparison of Q for uniform-line and

exponential-line resonators for different values of a/@,

when ZO(0) =30 ohms.

CONCLUSION

An attempt has been made in this paper to describe

a method by which the reflection coefficient of an ex.

ponential-line transformer can be determined readily,

from the Smith Chart, particularly when a frequency-

sensitive load or a transmission line whose input im-

pedance changes with frequency is terminated at the

GIbid., p. 280.
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Fig. 5–Q gain in exponential resonator. Cavity Iength = ——-—~—.
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load end. Analyses of this nature may be helpful in ob-

taining the optimum design parameters for the trans-

former for any specific load. Also discussed is the possi-

bility of using the exponential-line resonator to indicate

how, for some range of 20(0), the Q of an exponeni-ial

resonator can be increased greatly in excess of what

would be expected in a uniform-line resonator for i-he

same type of resonance. Similar analyses can be made

for other nonuniform line resonators.7

7 R. N. Ghose, ‘tSynthesis of Nonuniform Line, ” thesis submitted
in partial fulfillment of requirements for degree of electrical engineer,
Univ. of Ill.; 1956.

Correction
Tore N. Anderson, author of the paper “Rectangular

and Ridge Waveguide, ‘y which appeared on pages 201–

209 of the October, 1956 issue of these TRANSACTIONS,

regrets the omission of the following reference. The

illustration in Fig. 8 and the general equation for deflec-

tion of pressurized waveguide were obtained from James

L. Briggs and Joseph B. Brauer, Technical Note

RADC-TN-54-10, p. 3; August, 1954.


