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Exponential Transmission Lines as Resonators

and Transformers*
RABINDRA N. GHOSEf

Summary—An attempt has been made to analyze the theory of
an exponential transmission line from its complex reflection coeffi-
cient’s standpoint and to indicate how the characteristics of an ex-
ponential line can be completely represented for any frequency with
the help of the Smith Chart. It is shown that the optimum design
parameters of an exponential transmission line which may be used as
a transformer, with a frequency-sensitive load at one end, can be
determined with the help of the Smith Chart and some derived equa-
tions. This paper also includes a study of the coaxial type exponential
line which can be used as a series or parallel resonator. Theoretical
expressions for the attenuation constant, stored energy, and Q for
such types of resonator have been derived. Also indicated in this
paper is the possibility of replacing the uniform-line coaxial-type
resonators in many microwave and ubf wave filters by the ex-
ponential-line resonators, particularly when a large power-handling
cpacity is warranted.

INTRODUCTION

N RECENT YEARS the exponential transmission
I[: line has found wide application in microwave net-

works as a matching device suitable for matching
two unequal impedances over a wide band of frequen-
cies. A general analysis of the exponential transmission
line has heen made by Burrows! and Schelkunoff.2 The
purpose of this paper is to analvze the theory of the
exponential line from its reflection coefficient’s stand-
point and to indicate how the characteristics of an ex-
ponential line can be represented with the help of a
Smith Chart which is primarily designed for uniform
transmission lines. The possibility of using the expo-
nential transmission line in the form of a resonator is
also discussed in this paper.

GENERAL EqQuaTioNs AND THEIR SOLUTION

For any transmission line system the differential
equations {or the voltage and current can be repre-
sented by

av
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* Manuscript received by the PGMTT, January 30, 1957. Pre-
sented at the IRE-WESCON Conf., Los Angeles, Calif.; August 21~
24, 1956.

t The Ramo-Wooldridge Corp., Los Angeles, Calif. Formerly
with Radio Corp. of America, Camden, N. J.

1 C. R, Burrows, “The exponential transmission line,” Bell Sys.
Tech. J., vol. 17, pp. 555-373; October, 1938.

2 S. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Co., Inc., New York, N. Y., p. 222.

where

I"=voltage across the transmission line at z,

I =current in the transmission line at z,

Z =equivalent series impedance per unit length of the
line,

V'=equivalent shunt admittance per unit length of
the line.

For a nonuniform transmission line, Z(z) and Y(z) are
functions of z; z.e., they are functions of the position
along the line. Eq. (1) will usually give rise to a setl of
second-order differential equations
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Walker and Wax® have shown that these second-order
differential equations can be converted into a single
first-order nonlinear differential equation

@—27p+i(1—p2)ilnzu=0 (3)
dz 2 dz
where
V/iI—-2Z, N
P Virva ATV
and
y = VZT.
For an exponential transmission line,?
Zy = kev* 4)

where £ is the characteristic impedance of the line at
2=0, and « is the rate at which the characteristic im-
pedance changes exponentially with the position z.

From (3) and (4) one obtains the differential equation
for an exponential line

@_27p+ﬁ(1—-p)2=0. (3
ds 2

3 L. R. Walker and N. Wax, “Non-uniform transmission lines and
reflection coefficients,” J. Appl. Phys., vol. 17, pp. 1043-1045; De-
cember, 1946.

¢ For an exponential line whose Z, decreases from 3=0, « in (4)
can be replaced by (—a).
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If one is interested in the coaxial form of exponential
line through which TEM waves propagate without cut-
off, v can be regarded as a constant function of the po-
sition 2, since both o and §=2m/\ are independent of z.
This is also true for the parallel-wire transmission line
and the strip transmission line carrying TEM waves.

Thus, making use of the following transformation

2 4y?
p=pt s 52=(—7;+1> (6)
o o

one obtains {from (5)

dp a 7
fﬁ~sfszﬁ+c ™

and
oSz
(tanh 4+ tanh SC )
2y 2
plg) =~} —+§ ——"—r (8)
o A4
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where C is the constant of integration which has to be
evaluated from the boundary condition.

Let the boundary condition be so assumed that
p(I) =po, where po is known. From (8), then,

2y aSi
<Po + ‘-) -+ .S tanh —
«@ 2

tanh SC = — (9
2y LAY/

S+ (Po + —) tanh —

« 2

2 —
o3 = — (;Z - zz-n),

where Z;, is the input impedance of a uniform transmis-
sion line with normalized surge impedance of one and
which is terminated at the load end, z=/, by an im-

pedance
Po 2y
= —_— + ——-—) .
l @ oS

As the equivalent Z,, can readily be obtained from
the Smith Chart when «, v, and pp are known, the effect
of the exponential-line transformer in terms of the re-
flection coefficient and vswr at the input end can be de-
termined without too much laborious computation even
when a frequency-sensitive load with arbitrarily varying
reflection coefficient is connected at the load end. It may
be remarked that while computing Z;,, the electrical
length of the line should be considered as fI, where

S
B=Ba/l— ¢
282

for a lossless exponential line transformer.

and

(10)

I

(11)

(12)
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To enable the transformer to work well beyond the
cutoff frequency, it will be desirable to choose a such
that

4
akK—; (13)

A
A being the wavelength corresponding to the lowest fre-
quency in the passband which has to be transmitted
through the transformer. The fictitious impedance Z;
in (11) is, in general, complex. Assuming the trans-
former is lossless and is operating well beyond cutoff

v =1
and
— B poct
= . 14
Z 3 125 (14)

In order to make use of the method described, it is es~
sential that Z; should be in the right half-plane, as
otherwise one cannot make entries on the Smith Chart
to compute Zy,. To ensure this, one can set

%_Re {f";‘ %%(w%}]} >0 (19

where 6 1s the phase angle of the reflection coefficient p
at the load end of the transformer. That is,

i’;ol acos<@+%>.

But |po{ <1 and the value of cos (§+7/2) <1. Hence,

1p0{ cos(@«l—%)gl

8=

and

> (22
p 2
But this condition has already been assumed in order to
enable the transformer to operate well beyond the cut-
off frequency. Hence no difficulty will be experienced in
computing p(0) according to the method described
above. An equivalent circuit describing the method of
computing p(0) is shown in Fig. 1. It should be recog-
nized that this method will be of considerable help in
synthesizing the design parameters of a transformer for
optimum p(0) over a frequency band with any specific
load connection.?

ExPONENTIAL LINE AS A RESONATOR

From the preceding analysis, it appears that a stand-
ing wave can be maintained in a section of lossless ex-
ponential line when po is chosen 4 1. This suggests the
possibility of the use of the exponential line as a reso-
nator.

5 Schelkunoff, op. cit. The reflection chart shown in Fig. 7.11
can be used to determine the complex reflection coefficient when the
normalized impedance of the arbitrary load is known. Similarly, the

input impedance of the transformer for an arbitrary load can be
determined readily from Fig. 1 above and the reflection chart.
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Fig. 1—Equivalent circuit of an exponential transformer.

Let it be assumed that one is interested in using a sec-
tion of an exponential line as an infinite-impedance or
parallel-resonance type resonator when one end of the
line is short-circuited at z=/, as shown in Fig. 2. This
is analogous to a A/4 cavity for a uniform line

polr=—1,  p(0) = 1. (16)
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Fig. 2—Exponential resonator with Z increasing with 3>0.

From (10),

ST 2k — 1) T

PR
where £ is any integer. The required length for parallel
resonance is

n(2k — 1)
and
Ipmin = *Ml))‘n an

where a lossless line is assumed, such that y=:8. Simi-
larly, if one is interested in using the exponential line as
a series resonator,

-1, nr  (18)

Po i3=l =

A/
2

where 7 is any integer.
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The length of the resonator is
(0% (w1
5= aé; j;;z)l/z
and
Ly min —»—-l\—~— (19)

Fig. 3 shows the required length of the resonator for
series- and parallel-type resonance.
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Fig. 3—Minimum resonant length of series and
parallel-type exponential resonators.

STORED ENERGY, WALL LOSSES, AND Q OF
AN EXPoNENTIAL RESONATOR

From the differential equation of voltage in the ex-
ponential transmission line whose characteristic imped-
ance increases with 2> 0, one obtains

@z as
Viz) = 4 exp P iBz ) + Bexp —2— -+ Bz (20)
where 4 and B are arbitrary constants. When a shorting
plate is placed at 2=/,

V@) =0,

A 1551 55 /1”‘*0}7

P 6’7“' , — —_—

B 1 462
and

V() = — 2iBe®le(*/ sin (Bl — fz). (21)
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Let the current at any z be represented as
I(p, Z) = If(Z).
For the TEM mode,

nIf(z)
E,(p, 3) =
27p
b(2) pIf(z
- "ﬂ2@
a(z) 2mp
and
_ sin (Bl — B2)
E,, — ZiBeiBle(azM)_L (22)

bz’
o]

a(z)
7 being the intrinsic impedance of the free space. At
resonance, the maximum stored electrical energy is the
same as the maximum stored magnetic energy, and
when the stored electrical energy is maximum, the
stored magnetic energy is zero. Hence the stored energy
in a section of an exponential line acting as a resonator

can be obtained from its stored electrical energy alone.
Stored electrical energy

€ 1 b(2) 27
— f f f | E, |2dzpdpds
2 a(z) 0
b(2) gazgin? (B —
e f [ eesin® (B — )
a(z) b(Z))

———————— pdpdz
(i
a(z)

M=2|B].

U

I

(23)

where

From the assumed variation of the characteristic imped-
ance in an exponential line,

Z()(Z) = Zo(o) e**

b(z)
= 601n—— (24)
a()
Substituting the resuits of (24) in (23), one obtains
_ 30erM? <l B sin —25l> (25)
Zo(0) 28

RaM? 3600 | Zy(0)d
n?  Zo(0) 60 20 ot

W =
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For both series and parallel resonance, sin 23/=0,

30er M2
Zo(0)

where € is the dielectric constant of the medium inside
the transformer. Fig. 4 shows a comparison of the stored
energy in uniform and exponential type resonators.
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Fig. 4—Relative variation of stored energy in an
exponential resonator.

The wall losses consist of the losses resulting from the
tangential component of the magnetic field at the lateral
surface and at the end plates of the resonator. These can
be determined from the surface integral of the tangen-
tial 4 over the entire surface.

For parallel resonance, analogous to the \/4 type
resonance in a uniform line resonator, the wall loss W
becomes

ea(m—l)l _— 1 — (m - 1)2
L] 2 (26)
! -1 2 — 1)2
m! (m ) - (m Ny 1)
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where R, is the real part of the surface impedance of the

metal forming the resonator.
If Z4(0) be chosen 60 ohms and

a—0

then the Q of the resonator becomes

24072 <8+ A " )\)“1
R a b '

8
It is interesting to note that, when
a—0

the expouential-line resonator becomes a uniform-line
resonator and the Q of such resonator?® is

24O7r2<8+ A n )\>‘1
R, @ b '

The characteristic impedance of the lines is assumed to
be the same in both cases.

The Q can be determined alternatively from the input
reflection coefficient already derived. But the evaluation
of @ from the field integrals reveals the characteristics of
the resonator from the energy consideration.

Fig. 5 shows a comparison of Q for uniform-line and
exponential-line resonators for different values of «/8,
when Z,(0) =30 ohms.

CONCLUSION

An attempt has been made in this paper to describe
a method by which the reflection coefficient of an ex-
ponential-line transformer can be determined readily,
from the Smith Chart, particularly when a frequency-
sensitive load or a transmission line whose input im-
pedance changes with frequency is terminated at the

6 Ibid., ». 280.
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load end. Analyses of this nature may be helpful in ob-
taining the optimum design parameters for the trans-
former for any specific load. Also discussed is the possi-
bility of using the exponential-line resonator to indicate
how, for some range of Z3(0), the Q of an exponential
resonator can be increased greatly in excess of what
would be expected in a uniform-line resonator for the
same type of resonance. Similar analyses can be made
for other nonuniform line resonators.”

7 R. N. Ghose, “Synthesis of Nonuniform Line,” thesis submitted

in partial fulfillment of requirements for degree of electrical engineer,
Univ. of 1L.; 1956.

Correction

Tore N. Anderson, author of the paper “Rectangular
and Ridge Waveguide,” which appeared on pages 201—
209 of the October, 1956 issue of these TRANSACTIONS,
regrets the omission of the following reference. The
illustration in Fig. 8 and the general equation for deflec-
tion of pressurized waveguide were obtained from James
L. Brigge and Joseph B. Brauer, Technical Note
RADC-TN-54-10, p. 3; August, 1954,



